The Roles of Fibroblast Growth Factor Receptor 3 (FGFR3) in the Spectrum of Skeletal Dysplasia

Adedeji Okikiade *

California Northstate University, Elk-Groove, California, USA.

Olayinka Afolayan-Oloye

Department of Physiology, Tulane University, New-Orleans, LA, USA.

Rasheed Agboola

Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, South Georgia, GA, USA.

Aruwajoye Oluwatosin

All Saints University, College of Medicine, Saint Vincent and the Grenadines.

Joy Sithole

All Saints University, College of Medicine, Saint Vincent and the Grenadines.

Esther Akinyode

All Saints University, College of Medicine, Saint Vincent and the Grenadines.

Annah Akoth

All Saints University, College of Medicine, Saint Vincent and the Grenadines.

Adijat Oyewole

All Saints University, College of Medicine, Saint Vincent and the Grenadines.

Sotonye Potts-Johnson

All Saints University, College of Medicine, Saint Vincent and the Grenadines.

*Author to whom correspondence should be addressed.


Abstract

The fibroblast growth factor receptor 3 (FGFR3) gene mutations were identified to be involved in the pathogenesis of most chondropathies. The FGFR3 gene encodes the FGFR3 receptor and is involved in the regulation of bone growth by limiting the ossification of long bones. Mutations of the FGFR3 gene result in abnormal cell proliferation and improper cartilage development. We aim to provide an overview of the roles of FGFR3 in skeletal dysplasia by highlighting the pathogenesis, clinical variants of skeletal dysplasia, diagnosis, and their management.

Achondroplasia is the most common form of chondropathies, occurring in approximately 1 in 20,000-30,000 live births, and it is the most common form of genetic dwarfism. In over 80% of cases of achondroplasia, the mutation is sporadic, and only 20% are inherited autosomal dominant. Achondroplasia results from a point mutation in the gene encoding the transmembrane portion of FGFR3. Two viable base substitutions are identified in achondroplasia, including a point mutation of guanine substituted for adenine (c.1138G>A); this is identified in approximately 98% of the affected individuals, and transversion of guanine to cytosine (c.1138G>C).

Hypochondroplasia is a milder form of chondropathies with an incidence between 1 in 33,000 and 1 in 47,000 live births. Missense mutations of FGFR3 (p.Asn540Lys) are isolated in tyrosine kinase domain I occurring in approximately 60% of cases, and missense mutation of FGFR3 (p.Lys650Asn) identified in the tyrosine kinase domain II of FGFR3. Thanatophoric dysplasia is the most lethal form of chondropathies, with neonatal fetal death secondary to pulmonary hypoplasia. In thanatophoric dysplasia, there is Lys650Met substitution in FGFR3 (Type I) with impairment of endochondral bone growth and a pathogenic variant of p.Lys650Glu substitution in FGFR3 (Type II). In addition, specific amino acid substitution in the FGFR3 gene (G380R) was identified to be associated with severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN).

The diagnosis of achondroplasias is routinely made from clinical presentations and radiological findings. FGFR3 molecular genetic testing is performed in children with atypical presentations. In addition, a pre-implantation genetic diagnosis should be available for parents pursuing in-vitro fertilization and embryo implantation procedures. Management of chondropathies includes symptomatic treatment with drugs, surgical intervention, and lifelong follow-up care. Different pharmacological options have been used, including those that directly block FGFR3 activation or regulate signalling pathways controlling chondrocyte proliferation and differentiation.

Keywords: Achondroplasia, chondropathy, hypochondroplasia, skeletal dysplasias, FGFR3


How to Cite

Okikiade, A., Afolayan-Oloye, O., Agboola, R., Oluwatosin, A., Sithole, J., Akinyode, E., Akoth, A., Oyewole, A., & Potts-Johnson, S. (2023). The Roles of Fibroblast Growth Factor Receptor 3 (FGFR3) in the Spectrum of Skeletal Dysplasia. Advances in Research, 24(5), 34–44. https://doi.org/10.9734/air/2023/v24i5956

Downloads

Download data is not yet available.

References

McDonald EJ, De Jesus O. Achondroplasia. [Updated 2022 May 8]. In: Statpearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. Available:https://www.ncbi.nlm.nih.gov/books/NBK559263/

Vajo Z, Francomano CA, Wilkin DJ. The molecular and genetic basis of fibroblast growth factor receptor 3 disorders: The achondroplasia family of skeletal dysplasias, Muenke craniosynostosis, and Crouzon syndrome with acanthosis nigricans. Endocr Rev. 2000;2(1):23-39. DOI: 10.1210/edrv.21.1.0387 PMID: 10696568

Efat Khorasani M, Rahim Vakili M. Congenital adrenal hyperplasia and schmid metaphyseal chondrodysplasia in a child. Iranian Journal of Medical Sciences. 2016;64-66.

Swathi KV, Maragathavalli G. Achondroplasia: A form of disproportionate dwarfism - A case report. Indian J Dent Res. 2020;3(5):794-798. DOI: 10.4103/ijdr`.IJDR_303_19 PMID: 33433522

Oberklaid F, Danks DM, Jensen F, Stace L, Rosshandler S. Achondroplasia and hypochondroplasia. Comments on frequency, mutation rate, and radiological features in skull and spine. J Med Genet. 1979;16(2):140-6.

DOI: 10.1136/jmg.16.2.140 PMID: 458831; PMCID: PMC1012739

Yao W, Zeying, L, Zhenxing L, Heng Z, Xiaoyan Z, Yazhou C., Jinxiang H.. Advances in research on and diagnosis and treatment of achondroplasia in China. Intractable & Rare Diseases Research. 2013;2(2): 45-50.

Available:https://doi.org/10.5582/irdr.2013.v2.2.45

Bonaventure J, Rousseau F, Legeai-Mallet L, Le Merrer M, Munnich A, Maroteaux P. Common mutations in the fibroblast growth factor receptor 3 (FGFR 3) gene account for achondroplasia, hypochondroplasia, and thanatophoric dwarfism. Am J Med Genet. 1996;63(1):148-54.

DOI:10.1002/(SICI)1096-8628(19960503)63:1<148::AID-AJMG26>3.0.CO;2-N PMID: 8723101

Castro-Feijóo L, Loidi L, Vidal A, Parajes S, Rosón E, Alvarez A, Cabanas P, Barreiro J, Alonso A, Domínguez F, Pombo M. Hypochondroplasia and acanthosis nigricans: a new syndrome due to the p. Lys650Thr mutation in the fibroblast growth factor receptor 3 gene?. European journal of endocrinology. 2008 Sep;159(3):243-9.

Bober MB, Bellus GA, Nikkel SM, Tiller GE. Hypochondroplasia genereviews [Internet]; 2020.

Jones, Kenneth L. Recognizable patterns of human malformation. Philadelphia, PA: Elsevier Saunders; 2006.

Smid CJ, Modaff P, Alade A, Legare JM, Pauli RM. Acanthosis nigricans in achondroplasia. Am J Med Genet A. 2018; 176(12):2630-2636.

Wenger T, Miller D, Evans K. FGFR Craniosynostosis Syndromes overview. National Centre for Biotechnological information. Available:https://www.ncbi.nlm.nih.gov/books/NBK1455/

Almeida MR, Campos-Xavier AB, Medeira A, Cordeiro I, Sousa AB, Lima M, Soares G, Rocha M, Saraiva J, Ramos L, Sousa S, Marcelino JP, Correia A, Santos HG. Clinical and molecular diagnosis of the skeletal dysplasias associated with mutations in the gene encoding Fibroblast Growth Factor Receptor 3 (FGFR3) in Portugal. Clin Genet. 2009;75(2):150-6.

Coi A, Santoro M, Garne E, Pierini A, Addor MC, Alessandri JL, Bergman JEH, Bianchi F, Boban L, Braz P, Cavero-Carbonell C, Gatt M, Haeusler M, Klungsøyr K, Kurinczuk JJ, Lanzoni M, Lelong N, Luyt K, Mokoroa O, Mullaney C, Nelen V, Neville AJ, O'Mahony MT, Perthus I, Rankin J, Rissmann A, Rouget F, Schaub B, Tucker D, Wellesley D, Wisniewska K, Zymak-Zakutnia N, Barišić I. Epidemiology of achondroplasia: A population-based study in Europe. Am J Med Genet A. 2019;179(9):1791-1798.

French T, Savarirayan R. Thanatophoric Dysplasia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Mirzaa GM, Amemiya A, editors. GeneReviews [Internet]. University of Washington, Seattle; Seattle (WA); 2004.

Laederich MB, Horton WA. Achondroplasia: Pathogenesis and implications for future treatment. Curr Opin Pediatr. 2010;22(4):516-23. DOI: 10.1097/MOP.0b013e32833b7a69. PMID: 20601886

Ornitz DM, Legeai-Mallet L. Achondroplasia: Development, pathogenesis, and therapy. Dev Dyn. 2017;246(4):291-309. DOI: 10.1002/dvdy.24479. Epub 2017 Mar 2 PMID: 27987249; PMCID: PMC5354942

Bouali H, Latrech H. Achondroplasia: Current options and future perspective. Pediatr Endocrinol Rev. 2015;12(4):388-95. PMID: 26182483

Legare JM. Achondroplasia. [updated 2022 Jan 6]. In: Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2023.

PMID: 20301331

Horton WA, Hall JG, Hecht JT. Achondroplasia. Lancet. 2007;370(9582): 162-172.

DOI: 10.1016/S0140-6736(07)61090-3. PMID: 17630040

Bellus GA, McIntosh I, Smith EA, Aylsworth AS, Kaitila I, Horton WA, Greenhaw GA, Hecht JT, Francomano CA. A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypochondroplasia. Nat Genet. 1995;10(3):357-9. DOI: 10.1038/ng0795-357 PMID: 7670477

Meyer AN, Modaff P, Wang CG, Wohler E, Sobreira NL, Donoghue DJ, Pauli RM. Typical achondroplasia secondary to a unique insertional variant of FGFR3 with in vitro demonstration of its effect on FGFR3 function. Am J Med Genet A. 2021;185 (3):798-805. DOI: 10.1002/ajmg.a.62043

Epub 2020 Dec 2 PMID: 33368972; PMCID: PMC8083996

Richette P, Bardin T, Stheneur C. Achondroplasia: From genotype to phenotype. Joint Bone Spine. 2008;75(2): 125-30. DOI: 10.1016/j.jbspin.2007.06.007 Epub 2007 Sep 25 PMID: 17950653

Nagata T, Matsushita M, Mishima K, Kamiya Y, Kato K, Toyama M, Ogi T, Ishiguro N, Kitoh H. Severe achondroplasia due to two de novo variants in the transmembrane domain of FGFR3 on the same allele: A case report. Mol Genet Genomic Med. 2020;8(3):1148. DOI: 10.1002/mgg3.1148 Epub 2020 Jan 23 PMID: 31975530; PMCID: PMC7057100

Chilbule SK, Dutt V, Madhuri V. Limb lengthening in achondroplasia. Indian J Orthop. 2016;50(4):397-405.

DOI: 10.4103/0019-5413.185604 PMID: 27512222; PMCID: PMC4964773

Pauli RM. Achondroplasia: A comprehensive clinical review. Orphanet J Rare Dis. 2019;14(1):1.

DOI: 10.1186/s13023-018-0972-6 PMID: 30606190; PMCID

Savarirayan R, Irving M, Day J. C-Type natriuretic peptide analogue therapy in children with Achondroplasia. Reply. N Engl J Med. 2019;381(13):1291-1292. DOI: 10.1056/NEJMc1910394 PMID: 31553848

Chan ML, Qi Y, Larimore K, Cherukuri A, Seid L, Jayaram K, Jeha G, Fisheleva E, Day J, Huntsman-Labed A, Savarirayan R, Irving M, Bacino CA, Hoover-Fong J, Ozono K, Mohnike K, Wilcox WR, Horton WA, Henshaw J. Pharmacokinetics and exposure-response of vosoritide in children with achondroplasia. clin pharmacokinet. 2022;61(2):263-280. DOI: 10.1007/s40262-021-01059-1 Epub 2021 Aug 25 PMID: 34431071; PMCID: PMC8813707

Waller DK, Correa A, Vo TM, Wang Y, Hobbs C, Langlois PH, Pearson K, Romitti PA, Shaw GM, Hecht JT. The population-based prevalence of achondroplasia and thanatophoric dysplasia in selected regions of the US. Am J Med Genet A. 2008; 146A(18):2385-9. DOI: 10.1002/