Genus Vernonia (Asteraceae): A Promising Source of Antitumor Agents with Pharmacological Potentials

Vitor Gonzatto

Department of Chemistry, Federal University of Piauí, Teresina, Piauí, Brazil.

Regina Maria Sousa de Araújo

Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, Brazil.

Lidiane Pereira de Albuquerque *

Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, Brazil.

*Author to whom correspondence should be addressed.


Abstract

Antitumor research leads to the development of new molecules that act specifically in tumor cells by blocking or inhibiting their molecular targets. New therapeutic approaches for the screening of bioactive compounds present in medicinal plants have received increasing attention due to their chemopreventive and chemotherapeutic properties. In ethnomedicine, plants of the genus Vernonia (Asteraceae) are widely used and some have shown several and interesting biological activities, including anticancer. This present study aimed to document experimental evidence supporting the claimed ethnomedical uses of Vernonia species for the treatment of various types of cancer and also to confirm the anticancer potential of these plants. The compounds isolated from aqueous and alcoholic extracts, as well as fractions from different parts of Vernonia plants have acted as potential anticancer agents that inhibited the proliferation of various types of human cancer cell lines, including cervical cancer cells, melanoma cells, promyelocytic leucemia cells, breast adenocarcinoma cells, ovarian cancer, liver cancer cell, and human lung cancer cells. Studies have correlated the antitumor activity of Vernonia plants by inducing apoptosis and modulating mitochondrial signaling pathways controlled by NF-κB, Bcl-2 and p53, as well as inducing DNA damage and arresting the cell cycle at the S-phase checkpoint by oxidative stress. In conclusion, Vernonia species act as a promising source for drug development. However, further studies are needed to explore the exact mechanism of action, pharmacokinetics, chronic toxicological studies, safe dose consumption, and possible interactions with other herbs.

Keywords: Vernonia genus, anticancer, chemotherapeutic, medicinal plant


How to Cite

Gonzatto, V., Araújo, R. M. S. de, & Albuquerque, L. P. de. (2022). Genus Vernonia (Asteraceae): A Promising Source of Antitumor Agents with Pharmacological Potentials. Advances in Research, 23(6), 67–79. https://doi.org/10.9734/air/2022/v23i6921


References

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 2021;71:209-249.

Amuthan A, Devi V, Shreedhara CS, Rao V, Jasphin S, Kumar N. Vernonia cinerea regenerates tubular epithelial cells in cisplatin induced nephrotoxicity in cancer bearing mice without affecting antitumor activity. J. Tradit. Complement. Med. 2021; 11:279-286.

Mbemi AT, Sims JN, Yedjou CG, Noubissi FK, Gomez CR, Tchounwou PB. Vernonia calvoana shows promise towards the treatment of ovarian cancer. Int. J. Mol. Sci. 2020;21:4429.

Baguley BC. Multiple drug resistance mechanisms in cancer. Mol. Biotechnol. 2010;46:308-316.

Fachrunisa D, Hasibuan PAZ, Harahap U. Cell cycle inhibition and apoptotic induction of Vernonia amygdalina Del. leaves extract on MCF-7 cell line. Open Access Maced. J. Med. Sci. 2019;7:3807–3810.

Siddiqui AJ, Jahan S, Singh R, Saxena J, Ashraf SA, Khan A, et al. Plants in anticancer drug discovery: From molecular mechanism to chemoprevention. Biomed. Res. Int. 2022;5425485.

Wright GD. Unlocking the potential of natural products in drug discovery. Microb. Biotechnol. 2019;12:55-57.

Yedjou CG, Tchounwou SS, Williams K, Tchounwou PB. Novel cellular staining protocol and antiproliferative effect of Vernonia amygdalina Delile on lung and prostate cancer cells. Int. J. Eng. Sci. Res. Technol. 2018;7:552.

Wang K, Wang Y. In vitro activity of Vernonia cumingiana Benth. Sci. Program. 2022:4151669.

Iqbal J, Abbasi BA, Mahmood T, Kanwal S, Ali B, Shah SA, et al. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed. 2017;7:1129-1150.

Hasibuan PAZ, Harahap U, Sitorus P, Satria D. The anticancer activities of Vernonia amygdalina Delile. leaves on 4T1 breast cancer cells through Phosphoinositide 3-Kinase (PI3K) pathway. Heliyon. 2020;6:e04449.

Keeley SC, Jones Jr SB. Distribution of pollen types in Vernonia (Vernonieae: Compositae). Syst. Bot. 1979;4:195-202.

Toyang NJ, Verpoorte R. A review of the medicinal potentials of plants of the genus Vernonia (Asteraceae). J. Ethno-pharmacol. 2013;146:681-723.

Toyang NJ, Wabo HK, Ateh EN, Davis H, Tane P, Sondengam LB, et al. Cytotoxic sesquiterpene lactones from the leaves of Vernonia guineensis Benth. (Asteraceae). J. Ethnopharmacol. 2013;146:552–556.

Onyibe PN, Edo GI, Nwosu LC, Ozgor E. Effects of Vernonia amygdalina fractionate on glutathione reductase and glutathione-S-transferase on alloxan induced diabetes wistar rat. Biocatal. Agric. Biotechnol. 2021;36:102118.

Quintana J, Estévez F. Recent advances on cytotoxic sesquiterpene lactones. Curr. Pharm. Des. 2018;24:4355-4361.

Valkute TR, Aratikatla EK, Gupta NA, Ganga S, Santra MK, Bhattacharya AK. Synthesis and anticancer studies of Michael adducts and Heck arylation products of sesquiterpene lactones, zaluzanin D and zaluzanin C from Vernonia arborea. RSC Adv. 2018;8: 38289-38304.

Tuasha N, Escobar Z, Seifu D, Gadisa E, Petros B, Sterner O, et al. Cytotoxic and other bioactivities of a novel and known sesquiterpene lactones isolated from Vernonia leopoldi (Sch. Bip. ex Walp.) Vatke in breast cancer cell lines. Toxicol. Rep. 2022;9:382-392.

Albuquerque UP, Hanazaki N. Five problems in current ethnobotanical research – and some suggestions for strengthening them. Hum. Ecol. 2009;37: 653–661.

Chen Y, Clapp CE, Magen H. Mechanisms of plant growth stimulation by humic substances: The role of organo-iron complexes. Plant Nutr. Soil Sci. 2004;50: 1089–1095.

Martins ER, Castro DM, Castellani DC, Dias JE. In: Plantas Medicinais. inded. Editora da UFV, Viçosa; 2000.

Heinrich M, Bremner P. Ethnobotany and ethnopharmacy – their role for anticancer drug development. Curr. Drug Targets. 2006;7:239–245.

Rocha FAG, Araújo MFF, Costa NDL, Silva RP. O uso terapêutico da flora na história mundial. Holosphere. 2015;1:49–61.

Funk VA, Susanna A, Stuessy TF, Bayer RJ. In: Funk VA, Susanna A., Stuessy TF, and Bayer RJ. (Eds.), Systematics, evolution, and biogeography of the Compositae. IAPT, Vienna; 2009.

Rolnik A, Soluch A, Kowalska I, Olas B. Antioxidant and hemostatic properties of preparations from Asteraceae family and their chemical composition – Comparative studies. Biomed. Pharmacother. 2021;142: 111982.

Guimarães LGL, Cardoso MG, Silva LF, Gomes MS, Andrade MA, Souza JA, et al. Chemical analyses of the essential oils from leaves of Mikania glauca Mart. ex Baker. J. Essent. Oil Res. 2012;24:599–604.

Martucci MEP, De Vos RCH, Carollo CA, Gobbo-Neto L. Metabolomics as a potential chemotaxonomical tool: application in the genus Vernonia Schreb. PloS One. 2014;9:93149.

Pandey A, Dash D, Kela S, Dwivedi S, Tiwari P. Analgesic and anti-inflammatory properties of the fruits of Vernonia anthelmintica (L) Willd. Asian Pac. J. Trop. Dis. 2014;4:874-878.

Ugbogu EA, Emmanuel O, Dike ED, Agi GO, Ugbogu OC, Ibe C, et al. The Phytochemistry, Ethnobotanical, and Pharmacological Potentials of the Medicinal Plant- Vernonia amygdalina L. (bitter Leaf). Clin. Complem. Med. Pharmacol. 2021;1:100006.

Ajayi AM, Coker AI, Oyebanjo OT, Adebanjo IM, Ademowo OG. Ananas comosus (L) Merrill (pineapple) fruit peel extract demonstrates antimalarial, anti-nociceptive and anti-inflammatory activities in experimental models. J. -. 2022;282: 114576.

Balkrishna A, Solleti SK, Singh H, Singh R, Bhattacharya K, Varshney A. Herbo-metallic ethnomedicine ‘Malla Sindoor’ ameliorates lung inflammation in murine model of allergic asthma by modulating cytokines status and oxidative stress. J. Ethnopharmacol. 2022;282:114576.

Ezeani C, Ezenyi I, Erhunse N, Sahal D, Akunne T, Okoli C. Assessment of antimalarial medicinal plants used in Nigerian ethnomedicine reveals antimalarial potential of Cucurbita pepo leaf extract. J. Ethnopharmacol. 2022;292: 115120.

Toyang NJ, Wabo HK, Ateh EN, Davis H, Tane P, Kimbu SF, et al In vitro anti-prostate cancer and ex vivo antiangiogenic activity of Vernonia guineensis Benth. (Asteraceae) tuber extracts. J. Ethnopharmacol. 2012;141:866–871.

Gresham LJ, Ross J, Izevbigie EB. Vernonia amygdalina: anticancer activity, authentication, and adulteration detection. Int. J. Environ. Res. Public Health. 2008;5: 342–348.

Opata MM, Izevbigie EB. Aqueous Vernonia amygdalina extracts alter MCF-7 cell membrane permeability and efflux. Int. J. Environ. Res. Public Health. 2006;3: 174–179.

Turak A, Aisa HA. Three new elemanolides from the seeds of Vernonia anthelmintica. J. Asian Nat. Prod. Res. 2017;4:1–8.

Brandão G L, Kroon EG, Santos JR, Stehmann JR, Lombardi JA, Oliveira AB. Antiviral activities of plants occurring in the state of Minas Gerais, Brazil. Part 2. Screening Bignoniaceae species. Braz. J. Pharmacogn. 2010;20:742–750.

Mesquita ML, Paula JL, Pessoa C, Moraes MO, Costa-Lotufo LV, Grougnetd R, et al. Cytotoxic activity of Brazilian Cerrado plants used in traditional medicine against cancer cell lines. J. Ethnopharmacol. 2009; 123:439–445.

Prakash O, Kumar A, Ajeet PK. Anticancer potential of plants and natural products: A review. Am. J. Pharmacol. Sci. 2013;1: 104–115.

Shen R, Peng L, Zhou W, Wang D, Jiang Q, Ji J., et al. Anti-angiogenic nano-delivery system promotes tumor vascular normalizing and micro-environment reprogramming in solid tumor. J. Control. Release. 2022;349:550-564.

Sznarkowska A, Kostecka A, Meller K, Bielawski KP. Inhibition of cancer antioxidant defense by natural compounds. Oncotarget. 2017;8:15996–16016.

Abeysinghe NK, Thabrew I, Samarakoon SR, Ediriweera MK, Tennekoon KH, Pathiranage VPC, et al. Vernolactone promotes apoptosis and autophagy in human teratocarcinomal (NTERA-2) cancer stem-like cells. Stem Cells Int. 2019: 6907893.

Lowe HI, Daley-Beckford D, Toyang NJ, Watson C, Hartley S, Bryant J. The anti-cancer activity of Vernonia divaricata Sw against leukaemia, breast and prostate cancers In vitro. West Indian Med. J. 2014; 63:285-288.

Thongnest S, Chawengrum P, Keeratichamroen S, Lirdprapamongkol K, Eurtivong C, Boonsombat J, et al. Vernodalidimer L, a sesquiterpene lactone dimer from Vernonia extensa and anti-tumor effects of vernodalin, vernolepin, and vernolide on HepG2 liver cancer cells. Bioorg. Chem. 2019;92:103197.

Rocha JD, Gallon ME, Bisneto AVM, Amaral VCS, Almeida LM, Borges LL, et al. Phytochemical Composition and Protective Effect of Vernonanthura polyanthes Leaf against In Vivo Doxorubicin-Mediated Toxicity. Molecules. 2022;27:2553.

Johnson W, Tchounwou PB, Yedjou CG. Therapeutic mechanisms of Vernonia amygdalina delile in the treatment of prostate cancer. Molecules. 2017;22:1594.

Owoeye O, Yousuf S, Akhtar MN, Qamar K, Dar A, Farombi EO, et al. Another anticancer elemanolide from Vernonia amygdalina Del. Int. J. Biol. Chem. Sci. 2010;4:226–234.

Ito T, Aimaiti S, Win NN, Kodama T, Morita H. New sesquiterpene lactones, vernonilides A and B, from the seeds of Vernonia anthelmintica in Uyghur and their antiproliferative activities. Bioorg. Med. Chem. Lett. 2016;26:3608-361.

Omisore AD, Abiodun AA, Adeyemi DO, Abijo AZ, Jolayemi KA, Odedeyi AA. Therapeutic effects of Vernonia amygdalina on the expression of hormone and HER2 receptors in 7, 12-dimethylbenz(a)anthracene-induced breast tumours in obese and non-obese Wistar rats. Phytomedicine Plus. 2022;2:100318.

Liao SG, Wang Z, Li J, Liu Y, Li YT, Zhang LJ, et al. Cytotoxic sesquiterpene lactones from Vernonia bockiana. Chin. J. Nat. Med. 2012;10:230-233.

Pouyfung P, Choonate S, Wongnoppavich A, Rongnoparut P, Chairatvit K. Anti-proliferative effect of 8α-tigloyloxy-hirsutinolide-13-O-acetate (8αTGH) isolated from Vernonia cinerea on oral squamous cell carcinoma through inhibition of STAT3 and STAT2 phosphorylation. Phytomedicine. 2019;52: 238-246.

Beeran AA, Maliyakkal N, Rao CM, Udupa N. The enriched fraction of Vernonia cinerea L. induces apoptosis and inhibits multi-drug resistance transporters in human epithelial cancer cells. J. Ethnopharmacol. 2014;158:33-42.

Youn UJ, Miklossy G, Chai X, Wongwiwatthananukit S, Toyama O, Songsak T, et al. Bioactive sesquiterpene lactones and other compounds isolated from Vernonia cinerea. Fitoterapia. 2014; 93:194–200.

Thomas E, Gopalakrishnan V, Somasagara RR, Choudhary B, Raghavan SC. Extract of Vernonia condensata, inhibits tumor progression and improves survival of tumor-allograft bearing mouse. Sci. Rep. 2016;2:23255.

Bordignon A, Frédérich M, Ledoux A, Campos PE, Clerc P, Hermann T, et al. In Vitro antiplasmodial and cytotoxic activities of sesquiterpene lactones from Vernonia fimbrillifera Less. (Asteraceae). Nat. Prod. Res. 2018;32:1463-1466.

Tarapore RS, Siddiqui IA, Adhami VM, Spiegelman VS, Mukhtar H. The dietary terpene lupeol targets colorectal cancer cells with constitutively active Wnt/βcatenin signaling. Mol. Nutr. Food Res. 2013;57: 1950–1958.

Alhassan AM, Ahmed QU, Latip J, Shah SAA, Khan A'aYF, Sarian MN, et al.Phytoconstituents from Vernonia glaberrima Welw. Ex O. Hoffm. leaves and their cytotoxic activities on a panel of human cancer cell lines. S. Afr. J. Bot. 2018;116:16–24.

Vasincu A, Luca SV, Charalambous C, Neophytou CM, Skalicka-Woźniak K, Miron A. LC-HRMS/MS phytochemical profiling of Vernonia kotschyana Sch. Bip. ex Walp.: Potential involvement of highly-oxygenated stigmastane-type saponins in cancer cell viability, apoptosis and intracellular ROS production. S. Afr. J. Bot. 2022;144:83-91.

Marzouk AM, Elhalim OBA. A new lanostane-type triterpene and sesquiterpene lactones from Vernonia leopoldii and their in vitro cytotoxicity. Nat. Prod. Res. 2016;30:741-749.

Unuofin JO, Oladipo AO, Msagati TAM, Lebelo SL, Meddows-Taylor S, More GK. Novel silver-platinum bimetallic nanoalloy synthesized from Vernonia mespilifolia extract: Antioxidant, antimicrobial, and cytotoxic activities. Arab. J. Chem. 2020; 13:6639-6648.

Williams RB, Norris A, Slebodnick C, Merola J, Miller JS, Andriantsiferana R, et al. Cytotoxic sesquiterpene lactones from Vernonia pachyclada from the Madagascar rainforest. J. Nat. Prod. 2005;68:1371-4.

Flores-Guzman F, Alvarado-Sansinine JJ, Lopez-Munoz H, Escobar ML, Espinosa-Trejo M, Tavera-Hernandez R, et al. Antiproliferative, cytotoxic and apoptotic activity of the bentonite transformation of sesquiterpene lactone glaucolide B to 5β-hydroxyhirsutinolide on tumor cell lines. Eur. J. Pharmacol. 2019;856:172406.

Wu PS, Jeng J, Yang JJ, Kao V, Yen JH, Wu MJ. Vernonia patula (Dryand.) Merr. and Leucas chinensis (Retz.) R. Brown exert anti-inflammatory activities and relieve oxidative stress via Nrf2 activation. J. Ethnopharmacol. 2020;262: 113155.

Almeida LM, Prado ADL, Xavier-Silva KR, Firmino MT, Paula MIM, Gomes PN, et al. Cytotoxic effect of Vernonanthura polyanthes leaves aqueous extracts. Braz. J. Biol. 2021;81:575-583.

Pagno T, Blind LZ, Biavatti MW, Kreuger MRO. Cytotoxic activity of the dichloromethane fraction from Vernonia scorpioides (Lam.) Pers. (Asteraceae) against Ehrlich’s tumor cells in mice. T. Braz. J. Med. Biol. Res. 2006;39:1483-1491.

Pollo LAE, Bosi CF, Leite AS, Rigotto C, Kratz J, Simões CMO, Fonseca DEP, et al. Polyacetylenes from the leaves of Vernonia scorpioides (Asteraceae) and their antiproliferative and antiherpetic activities. Phytochemistry. 2013;95:375-383.

Schefer FA, Ricardo S, Blind CLZ, Luis P, Souza BLO, Filippin MFB, et al. Antitumoral activity of sesquiterpene lactone diacethylpiptocarphol in mice. J. Ethnopharmacol. 2017;198:262-267.

Mendis AS, Thabrew I, Ediriweera MK, Samarakoon SR, Tennekoon KH, Adhikari A, et al. Isolation of a new Sesquiterpene Lactone From Vernonia zeylanica (L) less and its anti-proliferative effects in breast cancer cell lines. Anticancer Agents Med. Chem. 2019;19: 410-424.

Kreuger MRO, Biavatti MW, Pacheco E, D’Avila JR, Blind LZ, Pedrini R. Cytotoxic activity of the sub-fraction 2125 from Vernonia scorpioides against Sarcoma 180 tumor cells in mice. Rev. Bras. Farmacogn. 2009;19:353-357.

Noumi E. Ethnomedicines used for treatment of prostatic disease in Foumban, Cameroon. Afr. J. Pharm. Pharmacol. 2010;4:793–805.

Silva ACN, Nascimento RMC, Rodrigues DCN, Ferreira PMP, Pessoa C, Lima DJB, et al. In vitro activity evaluation of seven Brazilian Asteraceae against cancer cells and Leishmania amazonensis. S. Afr. J. Bot. 2019;121:267–273.

Buskuhl H, Oliveira FL, Blind LZ, Freitas RA, Barison A, Campos FR, et al. Sesquiterpene lactones from Vernonia scorpioides and their in vitro cytotoxicity. Phytochemistry. 2010;71:1539-1544.

Turak A, Liu Y, Aisa HA. Elemanolide dimers from seeds of Vernonia anthelmintica. Fitoterapia. 2015;104:23–30.

Turak A, Maimaiti Z, Ma H, Aisa HA. Pseudo-disesquiterpenoids from seeds of Vernonia anthelmintica and their biological activities. Phytochem. Lett. 2017;21:163–168.

Wang JiL, Quan Q, Jia R, Guo XY, Zhang JM, Li X, et al. Isorhamnetin suppresses PANC-1 pancreatic cancer cell proliferation through S phase arrest. Biomed. Pharmacother. 2018;108:925–933.

Teramoto H, Gutkind JS. Mitogen-activated protein kinase family. Encyclopedia of Biological Chemistry. 2013;271:27225–27228.

Lee Jr JT, Steelman LS, McCubrey JA. Modulation of Raf/MEK/ERK kinase activity does not affect the chemoresistance profile of advanced prostate cancer cells. Int. J. Oncol. 2005;26:1637–1644.

Howard CB, McDowell R, Feleke K, Deer E, Stamps S, Thames E, et al. Chemotherapeutic vulnerability of triple-negative breast cancer cell-derived tumors to pretreatment with Vernonia amygdalina aqueous extracts. Anticancer Res. 2016; 36:3933–3943.

Cameron KS, Howard CB, Izevbigie EB, Hill, BJ, Tchounwou PB. Sensitivity and mechanisms of taxol-resistant prostate adenocarcinoma cells to Vernonia amygdalina extract. Exp. Toxicol. Pathol. 2013;65:759– 765.

Karin M. NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb. Perspect. Biol. 2009;1: 000141.

Paur I, Balstad TR, Kolberg M, Pedersen MK, Austenaa LM, Jacobs Jr DR, et al. Extract of oregano, coffee, thyme, clove, and walnuts inhibits NF-kappaB in monocytes and in transgenic reporter mice. Cancer Prev. Res. 2010;3:653–663.

Zhang Q, Wang X, Cao S, Sun Y, He X, Jiang B, et al. Berberine represses human gastric cancer cell growth In vitro and In vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways. Biomed. Pharmacother. 2020;128:110245.

Almeida LM, Prado ADL, Xavier-Silva KR, Firmino MT, Paula MIM, Gomes PN, et al. Cytotoxic effect of Vernonanthura polyanthes leaves aqueous extracts. Braz. J. Biol. 2021;81:575-583.

Xu MF, Tang PL, Qian ZM, Ashraf M. Effects by doxorubicin on the myocardium are mediated by oxygen free radicals. Life Sci. 2001;68:889–901.

Hall S, Anoopkumar-Dukie S, Grant GD, Desbrow B, Lai R, Arora D, et al. Modulation of chemotherapy-induced cytotoxicity in SH-SY5Y neuroblastoma cells by caffeine and chlorogenic acid. Toxicol. Mech. Methods. 2017;27:363–369.

Aslam MS, Naveed S, Ahmed A, Abbas Z, Gull I, Athar MA. Side effects of chemotherapy in cancer patients and evaluation of patients opinion about starvation based differential chemotherapy. J. Cancer Ther. 2014;5:817–822.

Salzillo A, Ragone A, Spina A, Naviglio S, Sapio L. Chlorogenic acid enhances doxorubicin-mediated cytotoxic effect in osteosarcoma cells. Int. J. Mol. Sci. 2021;22:8586.