A Review of the Therapeutic Potentials of Stem Cells, Fibroblast Growth Factors and T-cells in Regenerative Medicine

Adedeji Okikiade *

All Saints University, College of Medicine, Saints Vincent and the Grenadines, United States.

Aromedonghene Osharode

All Saints University, College of Medicine, Saints Vincent and the Grenadines, United States.

Olayinka Oloye-Afolayan

All Saints University, College of Medicine, Saints Vincent and the Grenadines, United States.

Damisola Ogunesan

Lagos University Teaching Hospital, Idi -Araba, Lagos, Nigeria.

Oyewole Adijat

All Saints University, College of Medicine, Saints Vincent and the Grenadines, United States.

K. Ubah Chibuike

All Saints University, College of Medicine, Saints Vincent and the Grenadines, United States.

Kevin Browne

All Saints University, College of Medicine, Saints Vincent and the Grenadines, United States.

*Author to whom correspondence should be addressed.


The human body is a complex structure with the innate ability to protect, defend, repair, and heal after damage or disease. For decades, medicine has faced problems that need the evolution of standard treatments and finding a way to accelerate the regenerative capabilities of the body, which possibly would not just treat but also cure certain diseases that previously had no cure. The question researchers have pondered on is whether or not it was possible as humans to use the body's innate healing power to our advantage and clinically accelerate or modify it to upgrade the treatment of certain diseases. The answer they found was in Regenerative Medicine (RM).

Historically the term regenerative medicine was found for the first time in a paper published in 1992 by Leland Kaiser. He made a list of approaches that would impact the future of hospitals. However, it is widely believed to have been coined during a 1999 conference on Lake Como by William Haseltine in an attempt to describe a novel field of medicine that combined knowledge from subjects like cell transplant, biochemistry, nanotechnology, prosthetics biomechanics, tissue engineering, and stem cell biology.

Regenerative Medicine is a relatively new field of clinical applications and research that is focused on the development of therapies like tissue engineering and stem cell technologies to repair, regenerate or replace defective, aged, injured, diseased, or permanently damaged organs, tissues or cells in order to restore them to their normal function.

It is important to note that RM has rapidly become one of the top treatment options for acute and chronic injuries, congenital diseases, and a wide range of acute and chronic diseases. It is more than just a field of medicine involving basic replacement therapies or traditional transplantation; it applies approaches like gene therapy, reprogramming of cell types, stem cell transplantation, and the use of soluble molecules, tissue engineering, and lots more.

The review article focuses on the therapeutic effects of fibroblast growth factors (FGFs), adipose-derived stem cells (ADSCs), and regulatory T cells (Tregs), and the possible role they play in tissue regeneration. They are apparently useful in the treatment of myriads of diseases expectedly having no cure.

Keywords: Regenerative medicine, stem cells, T-cells (Tregs), adipocytes, fibroblast growth factors

How to Cite

Okikiade, A., Osharode, A., Oloye-Afolayan, O., Ogunesan, D., Adijat, O., Chibuike, K. U., & Browne, K. (2022). A Review of the Therapeutic Potentials of Stem Cells, Fibroblast Growth Factors and T-cells in Regenerative Medicine. Advances in Research, 23(6), 38–66. https://doi.org/10.9734/air/2022/v23i6920


May Griffith, Celeste Finnerty, and Cornelia Kasper .Skin Regeneration, Repair, and Reconstruction; 2015.


N Sam MS. Tissue damage. Psychology Dictionary.org; 2013.


Krafts KP. Tissue repair: The hidden drama. Organogenesis. 2010 Oct-Dec; 6(4):225-33.

DOI: 10.4161/org.6.4.12555. PMID: 21220961; PMCID: PMC3055648.


Engel AG, Shen XM, Selcen D, Sine SM. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. The Lancet. Neurology. April 2015;14(4): 420–434.

Gabrielli A, Avvedimento EV, Krieg T. Scleroderma. N Engl J Med. 2009; 15:1989–2003.

DOI: 10.1056/NEJMra0806188 [PubMed]]

Walter JB, Talbot IC, Gardner HA, et al. General pathology (7th Edition). Churchill Livingstone. NY, USA; 1996.

Mayo Clinic: Myathenia gravis; 2022.


Antoine M, Wirz W, Tag CG, Gressner AM, Marvituna M, Wycislo M, Hellerbrand C, Kiefer P. Expression and function of fibroblast growth factor (FGF) 9 in hepatic stellate cells and its role in toxic liver injury. Biochem. Biophys. Res. Commun. 2007; 361:335-341.


Nunes QM, Li Y, Sun C, Kinnunen TK, Fernig DG. Fibroblast growth factors as tissue repair and regeneration therapeutics. Peer J. 2016;4:e1535



Hankemeier S, Keus M, Zeichen J, Jagodzinski M, Barkhausen T, Bosch U, Krettek C, Van Griensven M. Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: potential implications for tissue engineering of tendons and ligaments. Tissue Engineering. 2005;11(1–2):41–49.

Kazuhiro Watanabe, Syun Tahara, Hiroyuki Koyama, Mamu Shimizu, Mifumi Kawabe, Shingo Miyawaki. Visual and histological evaluation of the effects of trafermin in a dog oronasal fistula model, Journal of Veterinary Medical Science. 2022;84(1):64-68.



Tracy Wong, Luke Gammon, Lu Liu, Jemima E. Mellerio, Patricia J.C. Dopping-Hepenstal, John Pacy, George Elia, Rosemary Jeffery, Irene M. Leigh, Harshad Navsaria, John A. McGrath. Potential of fibroblast cell therapy for recessive dystrophic epidermolysis bullosa. Journal of Investigative Dermatology. 2008;128(9).


Gilbane AJ, Denton CP, Holmes AM. Scleroderma pathogenesis: a pivotal role for fibroblasts as effector cells. Arthritis Res Ther. 2013;15(3):215.

DOI: 10.1186/ar4230. PMID: 23796020; PMCID: PMC4060542.


Rottlaender A, Villwock H, Addicks K, Kuerten S. Neuroprotective role of fibroblast growth factor-2 in experimental autoimmune encephalomyelitis. Immunology. 2011;133(3):370-378.


Takayama S, Murakami S, Shimabukuro Y, Kitamura M, Okada H. Periodontal regeneration by FGF-2 (bFGF) in primate models. Journal of Dental Research. 2001;80(12):2075–2079.


Aebischer P, Salessiotis AN, Winn SR. Basic fibroblast growth factor released from synthetic guidance channels facilitate peripheral nerve regeneration across long nerve gaps. Journal of Neuroscience Research. 1989;23(3):282–289:2-s2.0-0024336588.

Kombucha H, Hato N, Teraoka M, Wakisaka H, Takahashi H, Gyo K, Tabata Y, Yamamoto M. Basic fibroblast growth factor combined with biodegradable hydrogel promotes healing of facial nerve after compression injury: an experimental study. Acta Oto-Laryngologica. 2010; 130(1):173–178


Adipose stem cells: biology and clinical applications for tissue repair and regeneration 2014. Lauren. Kokai, Kacey, Marra, J. PeterRubin

Casadei A, Epis R, Ferroni L, et al. Adipose tissue regeneration: a state of the art. J Biomed Biotechnol. 2012;2012: 462543.



The role of adipocytes in tissue regeneration and stem cell niches (2016) Brett Shook,1 Guillermo Rivera Gonzalez,1 Sarah Ebmeier,1 Gabriella Grisotti,2 Rachel Zwick,1 and Valerie Horsley; 2016.



White adipose tissue. In Wikipedia, The Free Encyclopedia.

Retrieved 01:50, September 13, 2022


Richard AJ, White U, Elks CM, et al. Adipose tissue: Physiology to metabolic dysfunction [Updated 2020 Apr 4]

Adipose tissue. In Wikipedia, The Free Encyclopedia.

Retrieved 01:54, September 13, 2022.


Brown adipose tissue. In Wikipedia, The Free Encyclopedia.

Retrieved 01:17, September 13, 2022


Cinti S. Pink adipocytes. Trends Endocrinol. Metab. 2018;1–16 [PubMed]

His-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am. J. Physiol. Physiol. 2000;279(3):C670–C681 [PubMed]

Barbarella G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis R, Cinti S. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am. J. Physiol. Metab. 2010;298(6):E1244–E1253 [PubMed]

Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang A-H, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerbäck S, Schrauwen P, Spiegelman BM. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366–376.

Leask A, Abraham DJ. TGFβ signalling and the fibrotic response. FASEB J. 2004;15:816–827.

DOI: 10.1096/fj.03-1273rev [PubMed]

True stem cell therapy: The latest Technology; 2019.


Mayo Clinic: Bone marrow transplant; July, 20, 2022.


Mahla RS. (2016). "Stem cells application in regenerative medicine and disease threpeutics. International Journal of Cell Biology. 2016;7:1–24.

Assmus B, Schächinger V, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation. December 2002;106(24):3009–3017.

Stem cells: University of Nebraska medical Centre; 2020.


Fang B, Li N, Song Y, Lin Q, Zhao RC. Comparison of human post-embryonic, multipotent stem cells derived from various tissues. Biotechnol Lett. 2009;31(7):929-938.


Chen BL, Wang DA. 2016; 20(30):4515-4523.


Al-Ghadban S, Artiles M, Bunnell BA. In: Adipose stem cells in regenerative medicine: Looking forward. Front. Bioeng. Biotechnol. 2022;9:837464.

DOI: 10.3389/fbioe.2021.837464


Zizhen Si, Xue Wang, Changhui Sun, Yuchun Kang, Jiakun Xu, Xidi Wang, Yang Hui. Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies; 2019.


Kaewsuwan S, Song SY, Kim JH, Sung JH. Mimicking the functional niche of adipose-derived stem cells for regenerative medicine. Expert Opin. Biol. Ther. 2012;12:1575-1588.

Ceccarelli S, Pontecorvi P, Anastasiadou E, Napoli C, Marchese C. Immunomodulatory effect of adipose-derived stem cells: the cutting edge of clinical application. Front. Cell Dev. Biol. 2020; 8:236.

DOI: 10.3389/fcell.2020.00236


Xiao, Jianhong, Zhang, Yangchun, Liu, Liqiong, Jin, Mengdi, Liu, Ning, Ye, Yuan, Li, Junjun, Liu, Zelin. Transplanting of adipose derived stem cells up-Regulate CD4+CD25+Foxp3+ T cells in a murine model of passive chronic immune thrombocytopenia (2/22/2020).

He Y, Ji D, Lu W, Chen G. The mechanistic effects and clinical applications of various derived mesenchymal stem cells in immune thrombocytopenia. Acta Haematol; 2022.


Fang B, Mai L, Li N, Song Y. Favorable response of chronic refractory immune thrombocytopenic purpura to mesenchymal stem cells. Stem Cells Dev. 2012 Feb 10;21(3):497-502.

DOI: 10.1089/scd.2011.0231. Epub 2011 Aug 12. PMID: 21711157; PMCID: PMC3272240.


Fang B, Song YP, Li N, Li J, Han Q, Zhao RC. Resolution of refractory chronic autoimmune thrombocytopenic purpura following mesenchymal stem cell transplantation: a case report. Transplant Proc. 2009;41(5):1827–30.

Xiao J, Zhang C, Zhang Y, Zhang X, Zhao J, Liang J, et al. Transplantation of adipose-derived mesenchymal stem cells into a murine model of passive chronic immune thrombocytopenia. Transfusion. 2012;52(12):2551–8.

Wikipedia contributors. Pure red cell aplasia. In Wikipedia, The Free Encyclopedia; 2021, September 2.

Retrieved 15:40, September 13, 2022


Lipton J, Glader B, Means RT. Red cell aplasia: acquired and congenital disorders. In: Greer JP, Arber DA, Glader BE, List A, Means RT, Paraskevas F, Rodgers GM, eds. Wintrobe’s Clinical Hematology. 13th ed. Philadelphia, PA: Lippincott Williams & Wilkins. 2013;975-89.


Young NS, Abkowitz JL, Luzzatto L. New Insights into the pathophysiology of acquired cytopenias. Hematology Am Soc Hematol Educ Program. 2000;18-38.


Fang B, Song Y, Li N, et al. Mesenchymal stem cells for the treatment of refractory pure red cell aplasia after major ABO-incompatible hematopoietic stem cell transplantation. Ann Hematol. 2009;88: 261–266.

DOI:https://doi.org/10.1007/s00277-008-0599-0 Available:https://link.springer.com/article/10.1007/s00277-008-0599-0

Risitano AM, Maciejewski JP, Selleri C, Rotoli B. Function and malfunction of hematopoietic stem cells in primary bone marrow failure syndromes. Curr Stem Cell Res Ther. 2007;2(1):39-52.


Li YF, Li N, Song P, Yang, Zhang GL, Lin QD. Human adipose tissue-derived mesenchymal stem cells for treatment of refractory pure red cell aplasia after major ABO-incompatible hematopoietic stem cell transplantation; 2009 July.


Abdul Halim NS, Fakiruddin KS, Ali SA, Yahaya BH. A comparative study of non-viral gene delivery techniques to human adipose-derived mesenchymal stem cell. Int J Mol Sci. 2014 Aug 26;15(9):15044-60.

DOI: 10.3390/ijms150915044. PMID: 25162825; PMCID: PMC4200830.

Maher TM, Wells AU, Laurent GJ. Idiopathic pulmonary fibrosis: multiple causes and multiple mechanisms? Eur Respir J. 2007;30:835-9.


Yang S, Liu P, Jiang Y, Wang Z, Dai H, Wang C. Therapeutic applications of mesenchymal stem cells in idiopathic pulmonary fibrosis. Front. Cell Dev. Biol. 2021;9:639657.

DOI: 10.3389/fcell.2021.639657


Lee SH, Lee EJ, Lee SY, et al. The effect of adipose stem cell therapy on pulmonary fibrosis induced by repetitive intratracheal bleomycin in mice. Exp Lung Res. 2014;40:117-25 [Crossref] [PubMed]

Mangla A, Hamad H. Pure Red Cell Aplasia [Updated 2022 Jun 27]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-.

Bae JS, Carter JE, Jin HK. Adipose tissue-derived stem cells rescue Purkinje neurons and alleviate inflammatory responses in Niemann–Pick disease type C mice. Cell Tissue Res. 2010;340(2):357–369.


Liang Y, Zhang D, Li L, et al. Exosomal microRNA-144 from bone marrow-derived mesenchymal stem cells inhibits the progression of non-small cell lung cancer by targeting CCNE1 and CCNE2. Stem Cell Res Ther. 2020;11:87.

DOI:https://doi.org/10.1186/s13287-020-1580-7 Available:https://stemcellres.biomedcentral.com/articles/10.1186/s13287-020-1580-7

Wei‑Wei Chen, Xia Zhang, Wen Juan Huang. Role of neuroinflammation in neurodegenerative diseases (Review). 2016;3391-3396. Published online on: 29 February 2016


Sun Z, Luo B, Liu ZH, Samartzis D, Liu Z, Gao B, Huang L, Luo ZJ. Adipose-derived stromal cells protect intervertebral disc cells in compression: implications for stem cell regenerative disc therapy. Int J Biol Sci. 2015 Jan 1;11(2):133-43.

DOI: 10.7150/ijbs.10598. PMID: 25561896; PMCID: PMC4279089.


young-Joon Chun, Young Soo Kim, Byeong Kyu Kim, Eun Hyun Kim, Ji Hyang Kim, Byung-Rok Do, Se Jin Hwang, Ju Yeon Hwang, Yoon Kyoung Lee. Transplantation of human adipose-derived stem cells in a rabbit model of traumatic degeneration of lumbar discs. World Neurosurgery. 2012;78(3–4).


Han J, Liu Y, Liu H, Li Y. Genetically modified mesenchymal stem cell therapy for acute respiratory distress syndrome. Stem Cell Res Ther. 2019;10(1):386. Published 2019 Dec 16.


Vincent GJ Guillaume, Tim Ruhl, Anja M Boos, Justus P Beier, The Crosstalk Between Adipose-Derived Stem or Stromal Cells (ASC) and Cancer Cells and ASC-Mediated Effects on Cancer Formation and Progression—ASCs: Safety Hazard or Harmless Source of Tropism?, Stem Cells Translational Medicine. 2022;11(4):394-406.

DOI:10.1093/stcltm/szac002, Available:https://onlinelibrary.wiley.com/doi/abs/10.1111/exd.13895

Guan J, Li Y, Lu F, et al. Adipose-derived stem cells ameliorate atopic dermatitis by suppressing the IL-17 expression of Th17 cells in an ovalbumin-induced mouse model. Stem Cell Res Ther. 2022;13:98.

DOI:https://doi.org/10.1186/s13287-022-02774-7 Available:https://stemcellres.biomedcentral.com/articles/10.1186/s13287-022-02774-7

Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–1301.


Arican O, Aral M, Sasmaz S, Ciragil P. Serum levels of TNF-alpha, IFN-gamma, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity. Mediators Inflamm. 2005;(5):273–279.


Rajasekar Seetharaman, Anjum Mahmood, Prashant Kshatriya, Divyang Patel, Anand Srivastava. Mesenchymal stem cell conditioned media ameliorate psoriasis vulgaris: a case study. Case Reports in Dermatological Medicine. 2019;Article ID 8309103:5.


Yao D, Ye S, He Z, Huang Y, Deng J, Wen Z, Chen X, Li H, Han Q, Deng H, Zhao RC, Lu C. Adipose-derived mesenchymal stem cells (AD-MSCs) in the treatment for psoriasis: results of a single-arm pilot trial. Ann Transl Med. 2021 Nov;9(22):1653.

DOI:10.21037/atm-21-5028. PMID: 34988162; PMCID: PMC8667096.


He X, Zhang Y, Zhu A, et al. Suppression of interleukin 17 contributes to the immunomodulatory effects of adipose-derived stem cells in a murine model of systemic lupus erythematosus. Immunol Res. 2016;64:1157–1167.



Qiuni Gao, Zuoliang Qi, Xiaolei Jin, Zhenyu Yang, Panxi Yu, Xihang Yuan, Yuling Hu, Xiaonan Yang, Biological characteristics of adipose derived stem cells from patients with progressive hemifacial atrophy: An in vivo study. Journal of Cosmetic Dermatology; 2022.



Qi Y, Ma J, Li S, et al. Applicability of adipose-derived mesenchymal stem cells in treatment of patients with type 2 diabetes. Stem Cell Res Ther. 2019;10:274.

DOI:https://doi.org/10.1186/s13287-019-1362-2 Available:https://stemcellres.biomedcentral.com/articles/10.1186/s13287-019-1362-2

Chandra V, GS, Phadnis S, Nair PD, Bhonde RR. Generation of pancreatic hormone-expressing islet-like cell aggregates from murine adipose tissue-derived stem cells. Stem Cells. 2009; 27(8):1941–53.

Hu J, Fu Z, Chen Y, Tang N, Wang L, Wang F, et al. Effects of autologous adipose-derived stem cell infusion on type 2 diabetic rats. Endocr J. 2015;62(4):339–52.

Akino K, Mineda T, Akita S. Early cellular changes of human mesenchymal stem cells and their interaction with other cells. Wound Repair Regen. 2005;13(4):434–440.


Raghavendra Upadhya, Leelavathi N. Madhu, Shama Rao, Ashok K. Shetty, Proficiency of extracellular vesicles from hiPSC-derived neural stem cells in modulating proinflammatory human microglia: Role of pentraxin-3 and miRNA-21-5p. Frontiers in Molecular Neuroscience. 2022;15.



Chancellor AM, Slattery JM, Fraser H, Swingler RJ, Holloway SM, Warlow CP. The prognosis of adult-onset motor neuron disease: a prospective study based on the Scottish Motor Neuron Disease Register. J Neurol. 1993;240:339-346.


Fontanilla C, Gu H, Liu Q, et al. Adipose-derived stem cell conditioned media extends survival time of a mouse model of amyotrophic lateral sclerosis. Sci Rep. 2015;5:16953.


Albersen M, Fandel TM, Lin G, Wang G, Banie L, Lin CS, Lue TF. Injections of adipose tissue-derived stem cells and stem cell lysate improve recovery of erectile function in a rat model of cavernous nerve injury. J. Sex. Med. 2010;7(10):3331–3340;.


Gonzalez C, Bonilla S, Flores AI, Cano E, Liste I. An update on human stem cell-based therapy in parkinson’s disease. Current Stem Cell Research & Therapy; 2015.

Ager RR, Davis JL, Agazaryan A, et al. Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer's disease and neuronal loss. Hippocampus. 2015;25(7):813- 826.


Yan Y, Ma T, Gong K, Ao Q, Zhang X, Gong Y. Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer's disease mice. Neural Regen Res. 2014 Apr 15;9(8):798-805.

DOI: 10.4103/1673-5374.131596. PMID: 25206892; PMCID: PMC4146257


Shyu WC, Chen CP, Lin SZ, Lee YJ, Li H. Efficient tracking of non-iron-labeled mesenchymal stem cells with serial MRI in chronic stroke rats. Stroke. 2007;38(2):367–374.

Lee W, Park ST, Oh JE, Shim HJ, Lim J, Chu J, Kim KM. Transplantation of patient-derived adipose stem cells in YAC128 Huntington's disease transgenic mice. PLoS Curr. 2: RRN1183; 2010.

Mackenzie W. Ferguson, Connor J. Kennedy, Thulani H. Palpagama, Henry J. Waldvogel, Richard LM. Faull, Andrea Kwakowsky. Current and possible future therapeutic options for Huntington’s disease. Journal of Central Nervous System Disease; 2022.

DOI:10.1177/11795735221092517, 14, (117957352210925),


Petukhova L, Duvic M, Hordinsky M, Norris D, Price V, Shimomura Y, Kim H, Singh P, Lee A, Chen WV, Meyer KC, Paus R, Jahoda CA, Amos CI, Gregersen PK, Christiano AM. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature. 2010;466:113–117.


Castela E, Le Duff F, Butori C, et al. Effects of low-dose recombinant interleukin 2 to promote t-regulatory cells in alopecia areata. JAMA Dermatol. 2014;150(7):748–751.



Li MC, He SH. IL-10 and its related cytokines for treatment of inflammatory bowel disease. World J Gastroenterol. 2004 Mar 1;10(5):620-5.

DOI: 10.3748/wjg.v10.i5.620. PMID: 14991925; PMCID: PMC4716896.


Fedorak RN, Gangl A, Elson CO, Rutgeerts P, Schreiber S, Wild G, Hanauer SB, Kilian A, Chard M, LeBeau A, et al. Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn's disease. The Interleukin 10 Inflammatory Bowel Disease Cooperative Study Group. Gastroenterology. 2000;119:1473–1482.

Clough JN, Omer OS, Tasker S, et alRegulatory T-cell therapy in Crohn’s disease: challenges and advances. Gut. 2020;69:942-952.


Kloosterman TC, Martens AC, van Bekkum DW, Hagenbeek A. Graft-versus-leukemia in rat MHC-mismatched bone marrow transplantation is merely an allogeneic effect. Bone Marrow Transplant. 1995;15(4):583-590.


Piotr Trzonkowski, Maria Bieniaszewska, Jolanta Juścińska, Anita Dobyszuk, Adam Krzystyniak, Natalia Marek, Jolanta Myśliwska, Andrzej Hellmann. First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+CD127− T regulatory cells, Clinical Immunology; 2009.

Wu J, Ren B, Wang D, et al. Regulatory T cells in skeletal muscle repair and regeneration: recent insights. Cell Death Dis. 2022;13:680.


Tapas Kumar Goswami, Mithilesh Singh, Manish Dhawan, Saikat Mitra, Talha Bin Emran, Ali A. Rabaan, Abbas Al Mutair, Zainab Al Alawi, Saad Alhumaid, Kuldeep Dhama, Regulatory T cells (Tregs) and their therapeutic potential against autoimmune disorders – Advances and challenges, Human Vaccines & Immunotherapeutics. 2022;18:1.



Sogkas G, Atschekzei F, Adriawan IR, et al. Cellular and molecular mechanisms breaking immune tolerance in inborn errors of immunity. Cell Mol Immunol. 2021;18:1122–1140.


Tunio NA, Mansoor E, Sheriff MZ, Cooper GS, Sclair SN, Cohen SM. Epidemiology of Autoimmune Hepatitis (AIH) in the United States Between 2014 and 2019: A population-based national study. J Clin Gastroenterol. 2021;55(10):903-910.


Richard Taubert, Matthias Hardtke-Wolenski, Fatih Noyan, Artur Wilms, Anna K. Baumann, Jerome Schlue, Sven Olek, Christine S. Falk, Michael P. Manns, Elmar Jaeckel, Intrahepatic regulatory T cells in autoimmune hepatitis are associated with treatment response and depleted with current therapies. Journal of Hepatology; 2014.



Laura Elisa Buitrago-Molina, Julia Pietrek, Fatih Noyan, Jerome Schlue, Michael P. Manns, Heiner Wedemeyer, Matthias Hardtke-Wolenski, Elmar Jaeckel, Treg-specific IL-2 therapy can reestablish intrahepatic immune regulation in autoimmune hepatitis. Journal of Autoimmunity; 2020.



Jian Rong Sheng, Thiruppathi Muthusamy, Bellur S. Prabhakar, Matthew N. Meriggioli, GM-CSF-induced regulatory T cells selectively inhibit anti-acetylcholine receptor-specific immune responses in experimental myasthenia gravis. Journal of Neuroimmunology; 2011.



Revital Aricha, Debby Reuveni, Sara Fuchs, Miriam C. Souroujon, suppression of experimental autoimmune myasthenia gravis by autologous T regulatory cells. Journal of Autoimmunity; 2016.