Detection and Mitigation of Flood Attacks in IPv6 Enabled Software Defined Networks
O. Ashimi Quadri
Department of Computer Science, University of Ibadan, Ibadan, Nigeria.
Adeniji Oluwashola David *
Department of Computer Science, University of Ibadan, Ibadan, Nigeria.
*Author to whom correspondence should be addressed.
Abstract
Software-defined networking (SDN) is an emerging technology, which provides network architecture that decouples the control plane from the data plane. Due to the centralized control, the network becomes more dynamic, and the network resources are managed in a more efficient and cost-effective manner. The centralization of the control plane requires robust and real-time security techniques. The security Techniques will protect it from any sign of vulnerabilities associated with the network such as a distributed denial of service (DDoS) attacks. The problem of the data-plane is that the attack is hard to be tracked by the SDN controlling plane. This makes the switches to be more susceptible against these types of attacks and hence it is very important to have quick provisional methods in place to prevent the switches from breaking down as soon as first signs of an attack are detected. To resolve this problem, the research developed a mechanism that detects and mitigates flood attacks in IPv6 enabled software to define networks. An experimental testbed was developed using sFlow technique, floodlight controller, and OpenFlow version 1.3. A mitigation algorithm was also developed and was tested with a simulation tool Mininet. The real network traffic was tested on the testbed to investigate the effective mitigation of a DDoS attack. The mitigation time performance for IPv6 was 46.6% while IPv4 was 66.6%. Also, The result gathered from the experiment showed that both the response and detection times were 4 secs while the mitigation time was 7secs respectively. The overall control time being 11 secs. The experimental Testbed result shows that the developed testbed outperformed the previous methods with the ability to detect threats on the network faster. The result from the IPv6 testbed is a probable solution to mitigate the threats posed by DDoS attacks on the IPv6 enabled SDN network resources.
Keywords: IPv6, openflow, openvswitch, mininet, sFlow, DDoS, flood attack, SDN