Differential Influence of Growth Regulators during Somatic Embryogenesis of Gynodioecious Papaya Varieties‘CO.7’ and ‘Red Lady

Main Article Content

C. K. Rajesh
K. K. Kumar
C. Kavitha
G. Karthikeyan
K. Soorianathasundaram

Abstract

The study involved two auxins viz., 2,4-D (2,4-Diclorophenoxyacetic acid) and picloram at three different concentrations (1,2, 3 mg/L) in full strength MS media to study their comparative influence on induction of somatic embryogenesis from immature zygotic embryos of two gynodioecious varieties of papaya ‘CO.7’ and ‘Red Lady’. In papaya cultivar ‘CO.7’, 2,4-D at 2 mg/L gave the highest callus induction frequency of 90.93%, whereas comparatively higher concentration of 3 mg/L 2,4-D was found suitable for ‘Red Lady’ (87.26%). Although there was profuse callus formation, 2 mg/L 2,4-D recorded comparatively higher frequency of embryogenic calli in ‘Red Lady’ (51.67%) when compared to ‘CO.7’ (30.00%). Somatic embryo maturation was achieved upon transfer of embryogenic calli exhibiting globular stage embryos on to maturation medium (MS medium + ABA (Abscisic acid) and BAP (Benzyl amino purine) in different concentrations + glutamine 400 mg/L). In the maturation medium, the combination of 1.5 mg/L ABA and 0.4 mg/L BAP registered better conversion of the globular embryo to cotyledonary embryos than other levels. The frequency of somatic embryo germination was higher in ‘Red Lady’ (50.00%) as compared to ‘CO.7’ (31.67%) on half-strength MS medium devoid of growth regulators.

Keywords:
Somatic embryogenesis, papaya, picloram, 2, 4-Diclorophenoxyacetic acid, CO.7, Red Lady, immature zygotic embryos.

Article Details

How to Cite
Rajesh, C. K., Kumar, K. K., Kavitha, C., Karthikeyan, G., & Soorianathasundaram, K. (2020). Differential Influence of Growth Regulators during Somatic Embryogenesis of Gynodioecious Papaya Varieties‘CO.7’ and ‘Red Lady. Advances in Research, 21(4), 10-18. https://doi.org/10.9734/air/2020/v21i430196
Section
Original Research Article

References

Souza LMD, Ferreira KS, Chaves JBP, Teixeira SL. L-ascorbic acid, β-carotene and lycopene content in papaya fruits (Carica papaya) with or without physiological skin freckles. J. Scient Agric.Teixeira. 2008; 65(3):246-250.

Bhattacharya J, Khuspe SS, Renukdas NN, Rawal SK. Somatic embryogenesis and plant regeneration from immature embryo explant of papaya (Carica papaya L. cv. Washington and Honey Dew). Indian J. Exp. Biol. 2002;40(5):624-627.

Fitch MM. High frequency somatic embryogenesis and plant regeneration from papaya hypocotyl callus. Plant. Cell. Tiss. Org. Cult.1993;32:205–212.

Yang, Jiu S, Tsong AY, Ying HC, Shyi DY. Transgenic papaya plants from agro-bacterium-mediated transformation of petioles of in-vitro propagated multishoots. Plant. Cell. Rep. 1996;15(7):459–64.

Manshardt RM, Wenslaff TF. Interspecific hybridization of papaya with other Carica species. J. Am. Soc. Hortic. Sci.1989;114: 689–694.

Kumari S, Trivedi M, Shukla N, Mishra M. Polyamine mediated genotype independent somatic embryogenesis in papaya (Carica papaya L.). J. Plant. Arch. 2018;18(1):581-589.

Kabir MH, Rahman MZ, Mamun ANK. Somatic embryogenesis and plant regeneration from zygotic embryo in Carica papaya L., cv. Red-Lady. J. Plant. 2016;4(6):45.

Anandan R, Sudhakar D, Balasubramanian P, Gutieórrez-Mora A. In vitro Somatic embryogenesis from suspension cultures of Carica papaya L. Scientia. Hortic. 2012;136: 43-49.

Hossain M, Rehman SM, Islam R, Jorder OI. High efficiency plant regeneration from petiole explants of Carica papaya .L through organogenesis. Plant. Cell. Rep.1993;9: 320-324.

Fitch MM, Manshardt RM. Somatic embryogenesis and plant regeneration from immature zygotic embryos of papaya (Carica papaya L.) .Plant. Cell. Rep. 1990; 9(6):320-324.

Renukdas NN, Mohan ML, Khuspe SS, Rawal SK. Influence of phytohormones, culture conditions and ethylene antagonists on somatic embryo maturation and plant regeneration in papaya. Intl. J. Agri. Res. 2010;5(7):511-520.

Malabadi RB, Vijaya KS, Mulgund GS, Nataraja K. Induction of somatic embryo-genesis in papaya (Carica papaya). Res. J. Biotechnol. 2011;2(5):40-55.

Chaudhary K, Prakash J. Effect of 2,4-D and picloram on somatic embryogenesis in Carica papaya Var. P-7-9. Plant. Cell. Tiss. Biotechnol. 2019;29(1):25–32.

Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962;15(3):473–497.

Koehler, AD, Carvalho CR, Abreu IS, Clarindo WR. Somatic embryogenesis from leaf explants of hermaphrodite Carica papaya: a new approach for clonal propagation. Afr. J. Biotechnol. 2013; 12(18).

Renukdas NN, Mohan ML, Khuspe SS, Rawal SK. Influence of phytohormones, culture conditions and ethylene antagonists on somatic embryo maturation and plant regeneration in papaya. Intl. J. Agri. Res. 2010;5(7):511-520.

Sun D, Lu X, Liang G, Guo Q, Mo Y, Xie J. Production of triploid plants of papaya by endosperm culture. Plant. Cell. Tiss. Organ. Cult. 2011;104(1):23–29.

Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen H, Dudits D, Feher A. The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of Alfalfa. Plant. Physiol. 2002; 129(4):1807–19.

Mishra S, Sanyal I, Amla DV. Changes in protein pattern during different develop-mental stages of somatic embryos in chickpea. Biol. Plant. 2012;56(4):613– 19.

Dodeman V, Laurence, Ducreux G, Martin K. Zygotic embryogenesis versus somatic embryogenesis. J. Exp. Bot. 1997;48(8): 1493–1509.

Capelle V, Carine R, Laurence M, Agnes R., Aline M, Agnes M, Matthieu F, Alain C, Claudine T, Peter R. QTLs and candidate genes for desiccation and abscisic acid content in maize kernels. BMC. Plant. Biol. 2010;10(1):2.

Gutmann, Markus, Aderkas PV, Label P, Lelu M. Effects of abscisic acid on somatic embryo maturation of hybrid larch. J. Exp. Bot. 1996;47(12):1905–17.

Sholi, Nasser JY, Anjana C, Anuradha A, Neera BS. ABA enhances plant regeneration of somatic embryos derived from cell suspension cultures of plantain cv. Spambia (Musa sp.). Plant. Cell. Tiss. Organ. Cult. 2009;99(2):133-40.

Von Arnold S, Sabala I, Bozhkov P, Dyachok J and Filonova L. Developmental pathways of somatic embryogenesis. Plant. Cell. Tiss. Org. Cult. 2002;69(3):233-249.

Renukdas N, Mohan ML, Khuspe SS, Rawal SK. Influence of phytohormones, culture conditions and ethylene antagonists on somatic embryo maturation and plant regeneration in papaya. Int. J. Agric. Res. 2006;1:151-60.

Cipriano JL, Cruz ACF, Mancini KC, Schmildt ER, Lopes JC, Otoni WC, Rodrigo S. Somatic embryogenesis in Carica papaya as affected by auxins and explants, and morphoanatomical-related aspects.J. Anais da Academia Brasileira de Ciências Alexandre. 2018;90(1):385-400.

Yu, Tsong A, Shyi DY, Jiu SY. Comparison of the effects of kanamycin and geneticin on regeneration of papaya from root tissue. Plant. Cell. Tiss Org. Cult. 2006;74(2):169–78.

Roy PK, Roy SK, Hakim L,Mamun ANK. Somatic embryogenesis and plant regeneration of papaya (Carica papaya L. Cv. Shahi). Nucl. Sci. App. 2016;25(1&2).

Posada P, Laisyn, Montesinos YP, Diosdada GG, Dion D, Rafael GK. Complete germination of papaya (Carica papaya L. Cv. Maradol Roja) somatic embryos using temporary immersion system type rita® and phloroglucinol in semi- solid culture medium. In vitro. Cell. Dev. Biol. Plant. 2017;53(5):505-513.

Ascencio-Cabral A, Gutiérrez-Pulido H, Rodríguez-Garay B, Gutiérrez-Mora A. Plant regeneration of Carica papaya L. through somatic embryogenesis in response to light quality, gelling agent and phloridzin. Scientia. Hortic. 2008;118(2):155–60.