Cannabis, the Plant of the Unlimited Possibilities

Main Article Content

Klaus Dölle
David E. Kurzmann


This review paper gives an overview of Cannabis Sativa, also known as hemp, which has been cultivated and used century's B.C. due to its medical, hallucinogenic and agricultural properties. Cannabis has been described in 1938 as the billion-dollar plant but has lost its value in the U.S. due to regulatory and legislative issues.

Hemp has seen as new push In the U.S. with the introduction of the 2018 Farm Bill which allows on a federal level to grow hemp, pending on individual state regulations. Currently, industrial hemp production is allowed in at least 38 U.S. States under strict regulations.

Today hemp is used in counties that do not have as strict regulations as the U.S. in a variety of applications such as beauty products, carpets, cooking oil, personal care products and textiles.

Hemp can be considered as an alternative feedstock due to its low lignin and high cellulose level for biofuel application as an alternative to replace petroleum-based fuels and gases.

In the U.S. hemp research in these areas has stalled due to the complexity of the law.

Beside industrial application such as ropes, textiles, shoes, etc., hemp today is used in pharmaceutical and medical applications, by extracting Δ9-tetrahydrocannabinol and cannabinoids from the leaves and fluorescence of the hemp plant that contain no more than of up to 0.3% of these compounds. The use of hemp plants with higher levels are strictly forbidden in most countries.

Several extraction processes of cannabinoids from hemp are used They all use a solvent for extraction but differ in terms of efficiency, usage range and other factors influencing the extraction.

Nonetheless, overconsumption of cannabis products can be associated with several side effects, that can cause serious physiological and psychological damage in the human body may cause serious damage.

Wood flour, additive, papermaking, hand-sheets, paper properties

Article Details

How to Cite
Dölle, K., & Kurzmann, D. E. (2019). Cannabis, the Plant of the Unlimited Possibilities. Advances in Research, 20(3), 1-22.
Review Article


Hartsel JA, Eades J, Hickory B, Makriyannis A. Chapter 53-cannabis sativa and hemp nutraceuticals, efficacy, safety and toxicity. Academic Press. 2016;735-754.

Popp JR, Petrakis EA, Angelis A, Halabalaki M, Bonn GK, Stuppner H, Skaltsounis LA. Rapid isolation of acidic cannabinoids from Cannabis sativa L. using pH-zone refining centrifugal partition chromatography. Journal of Chromatography. 2019;1599:196-202.

Brighenti V, Pellati F, Steinbach M, Maran D, Benvenuti S. Development of a new extraction technique and HPLC method for the analysis of non-psychoactive cannabinoids in fibre type Cannabis sativa L (hemp). Journal of Pharmaceutical and Biomedical Analysis. 2017;143:228- 236.

Δ9-tetrahydrocannabinol (Δ9-THC), Wikipedia, Common Domain; 2019.

Leiman K, Colomo L, Armenta S, de la Guardia M, Esteve-Turrillas FA. Fast extraction of cannabinoids in marijuana samples by using hard-cap espresso machines. Talanta. 2018;190:321-326.

Devi V, Khanam S. Comparative study of different extraction processes for hemp (Cannabis sativa) seed oil considering physical, chemical and industrial-scale economic aspects. Journal of Cleaner Production. 2019;207:645-657.

Hemp, wikipedia, The Variety of Appearance of Cannabis, Common Domain; 2019.

Hanf, Wikipedia, Common Domain; 2019.
(Accessed 18 August, 2019)

Kitrytė V, Bagdonaitė D, Venskutonis PR. Biorefining of industrial hemo (Cannabis sativa L.) threshing residues into cannabinoid and antioxidant fractions by supercritical carbon dioxide, pressurized liquid and enzyme- assisted extractions. Food Chemistry. 2018;267:420-429.

Harper JK, Collins A, Kime L, Roth GW, Industrial hemp production, The Pennsylvania State University; 2018.
(Accessed 8 August 2019)

Karuppiah T, Azariah VE. Biomass pretreatment for enhancement of biogas production. Intertech Open. 2019;1-22.

Farm Bill; 2018.
(Accessed 6 August, 2019)

National Conference of Legislatures, State Industrial Hemp Status; 2019.
(Accessed 18 September, 2019)

Rovetto LJ, Aieta NV. Supercritical carbon dioxide extraction of cannabinoids from Cannabis sativa L., The Journal of Supercritical Fluids. 2017;129:16-27.

Koeberle A, Werz O. Perspective of microsomal prostaglandin E2 synthase-1 as drug target in inflammation-related disorders. Biochemical Pharmacology. 2015;98(1):1-15.

ElSohly MA, Slade D. Chemical constituents of marijuana: The complex mixture of natural cannabinoids. Life Science. 2005;78:539–548.

Thomas BF, ElSohly MA. Chapter 3-medical cannabis formulations. The Analytical Chemistry of Cannabis. 2016;43-61.

Popp JR, Petrakis EA, Angelis A, Halabalaki M, Bonn GK, Stuppner H, Skaltsounis LA. Rapid Isolation of acidic cannabinoids from cannabis sativa L. using pH-zone-refining centrifugal partition chromatography. Journal of Chromatography. 2019;1599:196-202.

Chang CW, Yen CC, Wu MS, Hsu MC, Wu YT. Microwave-assisted extraction of cannabinoids in hemp nut using response surface methodology: Optimization and comparative study. Molecules. 2017; 22(1894):1-15.

Sausserde R, Adamovics A. Industrial hemp for biomass production. Journal of Agricultural Engineering. 2013;XLIV(S2): e123:619-622.

Rehman MSU, Rashid N, Saif A, Mahmood T, Han JI. Potential of bioenergy production from industrial hemp (cannabis sativa). Renewable and Sustainable Energy Reviews. 2013;18:154-164.

Agbor V, Zurzolo F, Blunt W, Dartiailh C, Cicek N, sparling R, Levin DB. Single-step fermentation of agricultural hemp residues for hydrogen and ethanol production. Biomass and Bioenergy. 2014;64:62-69.

Upton R, Craker L, ElSohly M, Ronn E, Russo E, Sexton M. Cannabis inflorescence: Standards of identity, analysis, and quality control. Scott, American Herbal Pharmacopoia, Cannabis Infloresence and Leaf. 2013;1-15.

Brenneisen R. Chapter 2 - Chemistry and analysis of phytocannabinoids and other Cannabis constituents Marijuana and the Cannabinoids. Springer. 2007;17–49.

Radwan MM, ElSohly MA, Slade D, Ahmed SA, EI-Alfy WAT, Khan IA, Ross SA. Non-cannabinoid constituents from a high potency Cannabis sativa variety. Phytochemistry. 2008;69(14):2627–2633.

ElSohly MA, Slade D. Chemical constituents of marijuana: The complex mixture of natural cannabinoids. Life Science. 2005;78(5):539–548.

Callaway JC, 2004. Hempseed as a nutritional resource: An overview. Euphytica. 2004;140(1–2):65–72.

Turner CE, Elsohly MA, Boeren EG. Constituents of Cannabis sativa L. XVII. A review of the natural constituents. J. Nat. Prod. 1980;43(2):169–234.

Turner CE, Elsohly MA, Boeren EG. Constituents of Cannabis sativa L. XVII. A review of the natural constituents, Journal Natural Products. 1980;43(2):169–234.

Thomas BF, ElSohly MA. Chapter 3-medical cannabis formulations. The Analytical Chemistry of Cannabis. 2016; 43-61.

Das L, Liu E, Saeed A, Williams DW, Hu H, Li C, Ray AE, Shi J. Industrial hemp as a potential bioenergy crop in comparison with kenaf, switchgrass and biomass sorghum. Bioresource Technology. 2017; 244:641-649.

Di Marzo V, Piscitelli F. The endocannabinoid system and its modulation by Phytocannabinoids. Neurotherapeutics. 2015;12:692–698.

Zule J, Černič M, Šuštaršič M. Hemp fibers for production of speciality paper and board grades; 2012.
(Accessed August 12, 2019)

Van Roekel GJ. Hemp pulp and paper production. Journal of the International Hemp Association. 1994;1:12-14.

Angelini LG, Tavarini S, Di Candilo M. Performance of new and traditional fiber hemp (Cannabis sativa L.) cultivars for novel applications: Stem, bark and core yield and chemical composition. Journal of Natural Fibers. 2016;13:2:238-252.

Small E, Marcus D. Tetrahydrocannabinol levels in hemp (Cannabis sativa) germplasm resources. Econ. Bot. 2003; 57(4):545–558.

Cappelletto P, Brizzi M, Mongardini F, Barberi B, Nenci G, Poli M, Corsi G, Grassi G, Pasini P. Italy-grown hemp: Yield, composition and cannabinoid content. Industrial Crops and Products. 2001; 13(2):101–113.

National Conference of State Legislatures, State Industrial Hemp Status; 2019.

Federal register. Statement of Principles on Industrial Hemp; 2019.
(Accessed 12 September, 2019)

René Goscinny; 2019.
(Accessed 16 August, 2019)

Albert Uderzo; 2019.
(Accessed 16 August, 2019)

Humbold. Unterschiede zwischen Hanf und Marihuana: Morphologie, Verwendung und chemische Zusammensetzung; 2019. (Accessed 10 August 2019)

Andre CM, Hausman JF, Guerriero G. Cannabis sativa: The plant of the thousand and one molecules, Frontiers in Plant Sceince. 2016;7:1-17.

Prade T, Svensson SE, Andersson A, Mattsson JE. Biomass and energy yield of industrial hemp grown for biogas and solid fuel. Biomass and Bioenergy. 2011; 35:3040-3049.

Liua M, Fernandob D, Danielb G, Madsenc B, Meyera AS, Alea MT, Thygesena A. Effect of harvest time and field retting duration on the chemical composition, morphology and mechanical properties of hemp fibers. Industrial Crops and Products. 2015;69:29-39.

Watson DP, Clarke RC. The genetic future of hemp. Int. Hemp, International Hemp Association; 2014.
(Accessed 10 August, 2019)

Vonapartis E, Aubin MP, Seguin P, Mustafa AF, Charron JB. Seed composition of ten industrial hemp cultivars approved for production in Canada. Journal of Food Composition and Analysis. 2015;39:8-12.

Bower JL. Industrial Hemp (Cannabis sativa L.) as a papermaking raw material in minnesota: Technical, Economic and Environmental Considerations. 2004;1- 44.

How Products are Made, How industrial hemp is made - production process, making, history, used, processing, parts, components, steps; 2019.
(Accessed 8 August 2019)

Gesundheit. Alleskönner Cannabis: Kosmetik aus Hanf; 2019.
(Accessed 28 August, 2019)
Available:, German

Kriese U, Schumann E, Weber WE, Beyer M, Brühl L, Matthäus B. Oil content, tocopherol composition and fatty acids patterns of the seeds of 51 Cannabis sativa L. genotypes. Euphytica. 2004; 137:339-351.

Jolie, Canabis is the new beauty wonder weapon. German; 2005.
(Accessed 28 August, 2019)

Malachowska M, Przybysz M, Dubowik M, Kucner M, Buzala K. Comparison of papermaking potential of wood and hemp cellulose pulps, Annals of Warsaw University of Life Sciences – SGGW, Forestry and Wood Technology. 2015;91: 134-137.

Prade T, Industrial Hemp (Cannabis sativa L.) – a High-Yielding Energy Crop, Diss. (sammanfattning/summary) Alnarp, Sweden: Sveriges lantbruksuniv. Acta Universitatis Agricultura; 2011.

The Boston Hemp Co-Op’s Digital Hemp History Library and Museum; 2016. (Accessed 22 August 2019)

Hemp Products, Images by Klaus Dölle & David E. Kurzmann.

CBD Oil Production Process, Image by Klaus Dölle & David E. Kurzmann.

Tatke P, Jaiswal Y. An overview of microwave assisted extraction and its applications in herbal drug research. Research Journal of Medical Plants. 2011; 5:21–31.

Eskilsson CS, Björklund E. Analytical-scale microwave-assisted extraction. Journal of Chromatography. 2000;902:227–250.

Pico Y. Chapter 4 - Green Extraction Techniques, Comprehensive Analytical Chemistry; 2017.

Aladic K, Jarni K, Barbir T, Vidovic S, Vladic J, Bilic M, Jokic S. Supercritical CO2 extraction of hemp (Cannabis sativa L.) seed oil, Industrial Crop and Products. 2015;76:472-478.

Banos R, Manzano-Agugliaro F, Montoya FG, Gil C, Alcayde A, Gomez J. Optimization methods applied to renewable and sustainable energy: A review, Renewable & Sustainable Energy Reviews. 2011;15:3207-3219.

Shi J, Qing Q, Zhang T, Wyman CE, Lloyd TA. Chapter 26 - Biofuels from cellulosic biomass via aqueous processing, fundamentals of materials for energy and environmental sustainability. Cambridge University Press. 2011;336–349.

Kikas T, Tutt M, Raud M, Alaru M, Lauk R, Olt J. Basis of energy crop selection for biofuel production: Cellulose vs. lignin. International Journal of Green Energy. 2016;13(1):49-54.

Atakan Z. Cannabis, a complex plant: different compounds and different effects on individuals, Therapeutic Advances in Psychopharmacology. 2012;2(6):241-254.

Madadi M, Tu Y, Abbas A. Recent status on enzymatic saccharification of lignocellulosic biomass for bioethanol production. Electronic Journal of Biology. 2017;13(2):153-143.

Anker Y, Nakonechny F, Niazov B, Lugovskoy S, Nisnevitch M. Biofuel Production by Fermentation of Water Plants and Agricultural Lignocellulosic by-Products. 2016;70:1-5.

Dölle K, Wagmüller F, Determination of the Chemical Oxygen Demand (COD) of hydrothermal pretreated hay. British Journal of Applied Science & Technology. 2015;8(4):356-360.

Mechoulam R, Hanus L. A historical overview of chemical research on cannabinoids. Chemistry and Physics of Lipids. 2000;108:1-13.

Pakarinen A, Maijala P, Stoddard F, Santanen A, Kymäläinen M, Viikari L. Evaluation of annual bioenergy crops in the boreal zone for biogas and ethanol production. Biomass and Bioenergy. 2011; 35(8):3071-3078.

Casas XA, Pons JR. Environmental analysis of the energy use of hemp—analysis of the comparative life cycle: Diesel vs. hemp-diesel. International Journal of Agricultural Resources, Governance and Ecology. 2005;4:133- 139.

Struik PC, Amaducci S, Bullard MJ, Stuterheim NC, Venturi G, Cromack KTH. Agronomy of fibre hemp (Cannabis sativa L) in Europe. Industrial Crops and Products. 2000;11:107-118.

Sipos B, Kreuger E, Svensson S-E, Reczey K, Bjornsson L, Zacchi G. Steam pretreatment of dry and ensiled industrial hemp for ethanol production. Biomass and Bioenergy. 2010;34:1721-1731.

Shi G, Cai Q. Cadmium tolerance and accumulation in eight potential energy crops. Biotechnology Advances. 2009; 27:555-561.

Kok CJ, Coenen GCM, De Heij A. The effect of fibre hemp (Cannabis sativa L) on selected soil-borne pathogens. Journal of the International Hemp Association. 1994; 1:6-9.

Van der Werf HMG, Van Geel WCA, Wijlhuizen M. Agronomic research on hemp (Cannabis sativa L) in the Netherlands 1987-1993. Journal of the International Hemp Association. 1995; 2:14-7.

Walsh Z, Callaway R, ,Belle-Isle L, Capler R, Kay R, Lucas P, Holtzman S. Cannabis for therapeutic purposes: Patient characteristics, access, and reasons for use. International Journal of Drug Policy. 2013;24:511-516.

Kamireddy SR, Li J, Abbina S, Berti M, Tucker M, Ji Y. Converting forage sorghum and sunn hemp into biofuels through dilute acid pretreatment. Industrial Crops and Products. 2013;49:598–609.

Dien BS, Cotta MA, Jeffries TW. Bacteria engineered for fuel ethanol production: Current status. Applied Microbiology Biotechnology. 2003;63:258-266.

Wooley R, Ruth M, Glassner D, Sheehan J. Process design and costing of bioethanol technology: A tool for determining the status and direction of research and development. Biotechnology Progress. 1999;15:794-803.

Moxley G, Zhu Z, Zhang YP. Efficient sugar release by the cellulose solvent based lignocellulose fractionation technology and enzymatic cellulose hydrolysis. Journal of Agricultural and Food Chemistry. 2008;56:7885-90.

Hill AJ, Williams CM, Whalley BJ, Stephens GJ. Phytocannabinoids asnoveltherapeutic agents in CNS disorders. Pharmacology Therapeutics. 2012;133:79–97.

Kamireddy SR, Li J, Abbina S, Berti M, Tucker M, Ji Y. Converting forage sorghum and sunn hemp into biofuels through dilute acid pretreatment. Industrial Crops and Products. 2013;49:598–609.

Prade T, Svensson SE, Andersson A, Mattsson JE. Biomass and energy yield of industrial hemp grown for biogas and solid fuel. Biomass and Bioenergy. 2011; 35:3040–9.

Almarsdottir AR, Tarazewicz A, Gunnarsson I, Orlygsson J. Hydrogen production from sugars and complex biomass by Clostridium species, AK14 isolated from Icelandic hot spring. Islandic Agricultural Sciences. 2010;23:61-71.

Demirbas A. Biodiesel fuels from vegetable oils via catalytic and noncatalytic supercritical alcohol transesterification and other methods: A survey. Energy Conversion and Management. 2003; 44:2093-2109.

Deshpande A, Anitescu G, Rice PA, Tavlarides LL. Supercritical biodiesel production and power cogeneration: Technical and economic feasibilities. Bioresource Technology. 2010;102:1834-43.

Li SY, Stuart JD, Li Y, Parnas RS. The feasibility of converting Cannabis sativa L. oil into biodiesel. Bioresource Technology. 2010;101:8457-8460.

Oliveira F, Doelle K. Anaerobic digestion of food waste to produce biogas: A comparison of bioreactors to increase methane content – A review. Journal Food Process Technoloy. 2015;6(8):478:1-3.

Channiwala SA, Parikh PP. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel. 2002; 81:1051-1063.

Kreuger E, Escobar F, Svensoon S-E, Björnsson L. Biogas production from hemp-evaluation of the effect of harvest time on methane yield, 11th IWA World Congress on Anaerobic Digestion. Brisbane, Australia; 2007.

Prade T, Svensson SE, Andersson A, Mattsson JE. Biomass and energy yield of industrial hemp grown for biogas and solid fuel. Biomass and Bioenergy. 2011; 35:3040–9.

Pakarinen A, Maijala P, Stoddard F, Santanen A, Kymäläinen M, Viikari L. Evaluation of annual bioenergy crops in the boreal zone for biogas and ethanol production. Biomass and Bioenergy. 2011; 35(8):3071-3078.

Ebbert JO, Scharf EL, Hurt RT. Medical Cannabis. Mayo Clinic Proceedings. 2018; 93(12):1842-1847.

Russo EB, Jiang HE, Li X, Sutton A, Carboni A, delBianco F, Mandolino G, Zhao YX, Bera S, Zhang TB, Lü EG, Ferguson DK, Hueber F, Zhao LC, Liu CJ, Li CS. Phytochemical and genetic analyses of ancient Cannabis from central. Asia. J. Exp. Bot. 2008;59:4171–4182.

Skoglund G, Nockert M, Holst B. Viking and early Middle Ages northern Scandinavian textiles proven to be made with hemp. Scientific Reports. 2013; 3:2686.

De Petrocellis L, Ligresti A, Moriello AS, Allarà M, Bisogno T, Petrosino S. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Britisch Journal of Pharmacology. 2011; 163:1479–1494.

Arbeitsgemeinschaft Canabis als Medizin e.V. Cannabissorten und ihre THC- und CBD-Gehalte; 2019.
(Accessed 8 August 2019)
Available: German

Romano B, Pagano E, Orlando P, Capasso R, Cascio MG, Pertwee R, Marzo VD, Izzo AA, Borrelli F. Pure Δ(9)-tetrahydrocannabivarin and a Cannabis sativa extract with high content in Δ(9)-tetrahydrocannabivarin inhibit nitrite production in murine peritoneal macrophages. Pharmacol Res. 2016; 113(Pt A):199-208.

Amar BM. Cannabinoids in medicine: A review of their therapeutic potential, Journal of Ethnopharmamacology. 2006; 105:1-25.

McPartland JM, Russo EM. Cannabis and cannabis extracts: Greater than the sum of their parts? Journal of Cannabis Therapeutics. 2001;3-4:103-132.

Baker D, Pryce P, Giovannoni G, Thompson AJ. The therapeutic potential of cannabis. Lancet Neuro. 2013;2:291-298.

Hollister L. An approach to the medical marijuana controversy. Drug Alcohol Dependence. 2003;58:3-7.

Belendiuk KA, Baldini LL, Bonn-Miller MO. Narrative review of the safety and efficacy of marijuana for the treatment of commonly state-proved medical and psychiatric disorders. Addiction Science & Clinical Practice. 2015;10(10):1-10.

Davis WM, Hatoum NS. Neurobehavioral actions of cannabichromene and interactions with delta 9-tetrahydrocannabinol, General Pharmacology: The Vascular System. 1983;14:247–252.

Englund AM, Stone J, Morrison PD. Cannabis in the arm: What can we learn from intravenous cannabinoid studies? Current Pharmaceutical Design. 2012; 18:4906–4914.

Hill AJ, Williams CM, Whalley BJ, Stephens GJ. Phytocannabinoids asnoveltherapeuticagents in CNS disorders, Pharmacology Therapeutics. 2012;133:79–97.

Capasso R, Aviello G, Borrelli F, Romano B, Ferro M, Castaldo L, Montanaro V, Altieri V, Izzo AA. Inhibitory effect of standardized cannabis sativa extract and its ingredient cannabidiol on rat and human bladder contractility. Urology. 2011;77(4):1006.e9-e15.

Pagano E, Capasso R, Piscitelli F, Romano B, Parisi OA, Finizio S, Lauritano A, Marzo VD, Izzo AA, Borrelli F. An orally active cannabis extract with high content in cannabidiol attenuates chemically-induced intestinal inflammation and hypermotility in the mouse. Front Pharmacol. 2016;7:341.

Borrelli F, Fasolino I, Romano B, Capasso R, Maiello F, Coppola D, Orlando P, Battista G, Pagano E, Di Marzo V, Izzo AA. Beneficial effect of the non-psychotropic plant cannabinoid cannabigerol on experimental inflammatory bowel disease. Biochem Pharmacol. 2013;85(9):1306-1316.

Pagano E, Romano B, Iannotti FA, Parisi OA, D'Armiento M, Pignatiello S, Coretti L, Lucafò M, Venneri T, Stocco G, Lembo F, Orlando P, Capasso R, Di Marzo V, Izzo AA, Borrelli F. The non-euphoric phytocannabinoid cannabidivarin counteracts intestinal inflammation in mice and cytokine expression in biopsies from UC pediatric patients. Pharmacol Res. 2019;104464:1-12.

Pagano E, Montanaro V, Di Girolamo A, Pistone A, Altieri V, Zjawiony JK, Izzo AA, Capasso R. Effect of non-psychotropic plant-derived cannabinoids on bladder contractility: Focus on cannabigerol. Nat Prod Commun. 2015;10(6):1009-1012.

Iannotti FA, Pagano E, Moriello AS, Alvino FG, Sorrentino NC, D'Orsi L, Gazzerro E, Capasso R, De Leonibus E, De Petrocellis L, Di Marzo V. Effects of non-euphoric plant cannabinoids on muscle quality and performance of dystrophic mdx mice. Br J Pharmacol. 2019;176(10):1568- 1584.

Appendino G, Gibbons S, Giana A, Pagani A, Grassi G, Stavri M, Antibacterial cannabinoids from Cannabis sativa: A structure-activity study. J. Nat. Prod. 2008; 71:1427–1430.

DeLong GT, Wolf CE, Poklis A, Lichtman AH. Pharmacological evaluation of the natural constituent of Cannabis sativa, cannabichromene and its modulation by 9-tetrahydrocannabinol. Drug and Alcohol Dependence. 2012;112:126–133.

Eisohly HN, Turner CE, Clark AM, Eisohly MA. Synthesisand antimicrobial activities of certain cannabichromene and cannabigerol related compounds. Journal of Pharmaceutical Science. 1982;71: 1319–1323.

Ester F. Das endogene Cannabinoidsystem: Ein neuer Akteur in der Gehirn Darm Fett Achse, Cannabinoids. German. 2007;2(2):6-16.

Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocrine Review. 2006;27(1):73-100.

Cannabidiol (CBD) Und der Einsatz im Sport Canna Sport Research.; German; 2017.
(Accessed 8 August, 2019)

Iannotti FA, Pagano E, Guardiola O, Adinolfi S, Saccone V, Consalvi S, Piscitelli F, Gazzerro E, Busetto G, Carrella D, Capasso R, Puri PL, Minchiotti G, Di Marzo V. Genetic and pharmacological regulation of the endocannabinoid CB1 receptor in Duchenne muscular dystrophy. Natural Commun. 2018;9(1):3950.

Hoehe MR, Caenazzo L, Martinez MM, Hsieh WT, Modi WS, Greshon ES, Bonner TI. Genetic and physical mapping of the human cannabinoid receptor gene to chromosome 6qI4-qI5. New Biology. 1991; 3(9):880-885.

Gerard C, Mollereau C, Vassart G, Parmentier M. Nucleotide sequence of a human cannabinoid receptor cDNA, Nucleic Acids Research. 1990; 18(23):7142.

What is the endocannabinoid system and how does it work? Royal Queen Seeds German; 2017.
(Accessed 6 August, 2019)

Ranieri R, Marasco D, Bifulco M, Malfitano AM. Phytocannabinoids and cannabimimetic drugs: Recent patents in central nervous system disorder. Recent Pat CNS Drug Discov. 2016;I0(2):3-19.

Leirer VO, Yesavage JA, Morrow DG. Marijuana carry-over effects on aircraft pilot performance. Aviat. Space Environ. Med. 1991;62:221–227.

Karschner EL, Swortwood MJ, Hirvonen J, Goodwin RS, Bosket WM, Ramaekers JG, Huestis MA. Extended plasma cannabinoid excretion in chronic frequent cannabis smokers during sustained abstinence and correlation with psychomotor performance. Drug Testing and Analysis. 2016; 8(7):682–689.

Meier H, Caspi A, Ambler A, Harrington HL, Houts R, Keefe RSE, McDonald K, Ward A, Poulton R, Moffitt TE, Persistent cannabis users show neuropsychological decline from childhood to midlife. Proceedings of the National Academy of Sciences USA. 2012;109(40):2657–2664.

Bhattacharyya S, Morison PD, Fusar-Poli P, Martin-Santos R, Borgwardt S, Winton-Brown T, Nosarti C, O’ Carroll CM, Seal M, Allen P, Mehta MA, Stone JM, Tunstall N, Giampietro V, Kapur S, Murray RM, Zuardi AW, Crippa JA, Atakan Z, McGuire PA. Opposite effects of delta-9-tetrahy-drocannabinol and cannabidiol on human brain function and psychopathology. Neuro Psycho Pharmacology. 2010;35(3):764–774.